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China
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Abstract. The path integral for the relativistic spinless Aharonov–Bohm–Coulomb system is
performed. The energy spectra and wavefunctions are extracted from the resulting amplitude.

1. Introduction

With the help of Duru and Kleinert’s path-dependent time transformation [1] the list of
solvable path integrals has been extended to essentially all potential problems which possess
a solvable Schr̈odinger equation [2, 3]. Only recently has the technique been extended to
relativistic potential problems [4], followed by two applications [6–9]. Here we would
like to add a further application by solving the path integral of a relativistic particle in
two dimensions in the presence of an infinitely thin Aharonov–Bohm magnetic field along
the z-axis [10] and a 1/r-Coulomb potential (ABC system). This may be relevant for
understanding the behaviour of relativistic charged anyons which are restricted to a plane
but whose Coulomb field extends into three dimensions [2, 11].

This paper is organized as follow. In section 2, we calculate the path integral of the
relativistic ABC potential problem. The energy spectra and wavefunctions are extracted
from the resulting amplitude. Our conclusions are summarized in section 3.

2. Path integral for a relativistic Aharonov–Bohn–Coulomb system

Let us first consider a point particle of massM moving at a relativistic velocity in a
(D + 1)-dimensional Minkowski space with a given electromagnetic field. By using
t = −iτ = −ix4/c, the path integral representation of the fixed-energy amplitude (Green
function) is conveniently formulated in a(D + 1)-Euclidean spacetime with the Euclidean
metric,

(gµν) = diag(1, . . . ,1, c2) (1)

and is given by [4, 5]

G(xb,xa;E) = ih̄

2Mc

∫ ∞
0

dL
∫
Dρ8[ρ]

∫
DDx e−AE/h̄ (2)
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with the action

AE =
∫ τb

τa

dτ

[
M

2ρ(τ)
x′2(τ )− i

e

c
A(x) · x′(τ )− ρ(τ) (E − V (x))

2

2Mc2
+ ρ(τ)Mc

2

2

]
(3)

whereL is defined by

L =
∫ τb

τa

dτ ρ(τ) (4)

in which ρ(τ) is an arbitrary dimensionless fluctuating scale variable, and8[ρ] is some
convenient gauge-fixing functional, such as8[ρ] = δ[ρ − 1], to fix the value ofρ(τ) to
unity [4, 6, 7]. h̄/Mc is the well known Compton wavelength of a particle of massM, A(x)
is the vector potential,V (x) is the scalar potential,E is the system energy, andx is the
spatial part of the (D+1) vectorx = (x, τ ). This path integral forms the basis for studying
relativistic potential problems.

For the ABC system under consideration, the scalar potential is

V (r) = −e2/r (5)

and the vector potential reads

A(x) = 2g
−x2ê1+ x1ê2

x2
2 + x2

1

(6)

wheree is the charge and̂e1,2 stand for the unit vector along thex, y axis, respectively.
For convenience, we introduce the azimuthal angle around the tube:

θ(x) = arctan(x2/x1). (7)

The components of the vector potential can be, therefore, expressed as

Ai = 2g∂iθ. (8)

The associated magnetic field lines are confined to an infinitely thin tube along thez-axis:

B3 = 2gε3jk∂j ∂kθ = 2g2πδ(2)(x⊥) (9)

wherex⊥ is the transverse vectorx⊥ ≡ (x1, x2).
To obtain a tractable path integral for the potentialV , we have to regularize it via a

so-calledf -transformation [2, 6], which exchanges the path parameterτ by a new ones:

dτ = ds fl(xn)fr(xn−1) (10)

wherefl(x) and fr(x) are invertible functions whose product is positive. The freedom
in choosingfl,r amounts to an invariance under path-dependent reparametrizations of the
path parameterτ in the fixed-energy amplitude of equation (2). By this transformation,
the (D + 1)-dimensional relativistic fixed-energy amplitude for arbitrary time-independent
potential turns into the lattice form [2, 6]

G(xb,xa;E) ≈ ih̄

2Mc

∫ ∞
0

dS
N+1∏
n=1

[ ∫
dρn 8(ρn)

]
fl(xa)fr(xb)

[2πh̄εsbρbfl(xb)fr(xa)/M]D/2

×
N∏
n=1

[ ∫ ∞
−∞

dDxn
[2πh̄εsnρnf (xn)/M]D/2

]
exp

{
−1

h̄
AN
}

(11)

with the s-sliced action

AN =
N+1∑
n=1

[
M(xn − xn−1)

2

2εsnρnfl(xn)fr(xn−1)
− i
e

c
An · (xn − xn−1)

−εsnρnfl(xn)fr(xn−1)
(E − Vn)2

2Mc2
+ εsnρnfl(xn)fr(xn−1)

Mc2

2

]
(12)
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where the sign≈ in equation (11) becomes an equality forN →∞. A family of functions
which regulates the ABC system is

fl(x) = f (x)1−λ fr(x) = f (x)λ (13)

whose product satisfiesfl(x)fr(x) = f (x) = r. In two dimensions, we obtain the
amplitude

G(xb,xa;E) ≈ ih̄

2Mc

∫ ∞
0

dS
N+1∏
n=1

[ ∫
dρn 8(ρn)

]

× (ra/rb)
1−2λ

2πh̄εsbρb/M

N+1∏
n=2

[ ∫ ∞
−∞

d24xn
2πh̄εsnρnrn−1/M

]
exp

{
−1

h̄
AN
}

(14)

with the action

AN =
N+1∑
n=1

[
M(xn − xn−1)

2

2εsnρnr
1−λ
n rλn−1

− i
e

c
An · (xn − xn−1)

−εsnρnrn(rn−1/rn)
λ (E − Vn)2

2Mc2
+ εsnρnrn(rn−1/rn)

λMc
2

2

]
. (15)

Since the path integral represents the general relativistic resolvent operator, all results must
be independent of the splitting parameterλ after going to the continuum limit. Choosing
λ = 1/2, we obtain the continuum limit

AE [x,x′] =
∫

ds

[
Mx ′2

2ρr
− i
e

c
A · x′ − ρr (E − V )

2

2Mc2
+ ρrMc

2

2

]
. (16)

We now solve thes-sliced ABC system as in the case of the two-dimensional Coulomb
problem without the Aharonov–Bohm potential [2]. We introducing theLevi-Civitá
transformation(

x1

x2

)
=
(
u1 −u2

u2 u1

)(
u1

u2

)
(17)

and write this in a matrix form:

x = A(u)u. (18)

For every slice, the coordinate transformation reads

xn = A(un)un (19)

yielding

(Mxin)2 = 4ū2
n(Muin)2 (20)

whereūn ≡ (un + un−1)/2. For the sliced AB potential, i.e.

An = −2g
(x2)nê1− (x1)nê2

r2
n

(21)

the Levi-Civitá transformation yields

An · (xn − xn−1) = −2g
(x2)n(Mx1)n − (x1)n(Mx2)n

r2
n

= −4g
u2
nMu1

n − u1
nMu2

n

u2
n

. (22)

Thus we obtain for the path integral of equation (14) the Duru–Kleinert-transformed
expression:

G(xb,xa;E) = ih̄

2Mc

∫ ∞
0

dS eSEe
2/h̄Mc2 1

4
[G(ub,ua; S)+G(−ub,ua; S)] (23)
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whereG(ub,ua; S) is thes-sliced amplitude of a harmonic oscillator in an Aharonov–Bohm
vector potential corresponding to twice the magnetic field of equation (9) inu-space:

G(ub,ua; S) =
N+1∏
n=1

[ ∫
dρn 8(ρn)

]
1

2πh̄εsbρb/M

N∏
n=1

[ ∫ ∞
−∞

d2un

2πh̄εsnρn/M

]
exp

{
− 1

h̄
AN
}

with the action

AN =
N+1∑
n=1

{
m(Mun)2

2εsnρn
− 2i

e

c
(An · Mun)+ εsnρn

mω2u2
n

2
− εsnρn

h̄24α2

2mu2
n

}
. (24)

Here

m = 4M ω2 = M2c4− E2

4M2c2
(25)

and

An ·4un = −2g
u2
nMu1

n − u1
nMu2

n

u2
n

. (26)

The symmetrization inub in equation (23) is necessary since for each path fromxa to xb
there are two paths in the square root space, one fromua to ub and one fromua to −ub.

As in the two-dimensional Coulomb problem, there are nos-slicing corrections [2].
Let us now analyse the effect of the magnetic interaction upon the Coulomb system,

defining the azimuthal angleϕ(u) = arctan(u2/u1) = θ(x)/2 in the u-plane, so that
Aµ = 2g∂µϕ, B3 = 2gε3jk∂j ∂kϕ. Note that the derivatives in front ofϕ(u) commute
everywhere, except at the origin where Stokes’ theorem yields∫

d2u(∂1∂2− ∂2∂1)ϕ =
∮

dϕ = 2π. (27)

The magnetic flux through the tube is defined by the integral

8 =
∫

d2uB3. (28)

A comparison with the equation forϕ(u) shows that the coupling constantg is related to
the magnetic flux by

g = 8

4π
. (29)

When insertingAµ = 2g∂µϕ into equation (24), the interaction takes the form

Amag= −2h̄µ0

∫ S

0
ds ϕ′(s) (30)

whereϕ(s) ≡ ϕ(u(s)), andµ0 is the dimensionless number

µ0 ≡ −2eg

h̄c
. (31)

The minus sign is a matter of convention. Since the particle orbits are present at all times,
their worldlines in spacetime can be considered as being closed at infinity, and the integral

n = 1

2π

∫ S

0
ds ϕ′ (32)

is the topological invariant with integer values of the winding numbern. The magnetic
interaction is therefore purely topological, its value being

Amag= −h̄µ04πn. (33)
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After adding this to the action of equation (24) in the radial decomposition of the relativistic
path integral [3, 6, 7], we rewrite the sum over the azimuthal quantum numbersk via
Poisson’s summation formula

∞∑
m=−∞

f (m) =
∫ ∞
−∞

dµ
∞∑

n=−∞
e2πnµif (µ) (34)

and obtain

G(ub,ua; S) =
∫ ∞
−∞

dµ
1√
ubua

G(ub, ua; S)µ ×
∞∑

n=−∞

1

2π
ei(µ−2µ0)(ϕb+2nπ−ϕa). (35)

Since the winding numbern is often not easy to measure experimentally, let us extract
observable consequences which are independent ofn. The sum over alln forcesµ to be
equal to 2µ0 modulo an arbitrary integer number. The result is

G(ub,ua; S) =
∞∑

k=−∞

1√
ubua

G(ub, ua; S)k+2µ0

1

2π
eik(ϕb−ϕa). (36)

We now choose the gaugeρ(s) = 1 in equation (24). This leads to the Duru–Kleinert
transformed action

AN =
∫ S

0
ds

[
mu′2

2
− 2i

e

c
(A · u′)+ mω

2u2

2
− 4h̄2α2

2mu2

]
(37)

whereα denotes the fine-structure constantα ≡ e2/h̄c ≈ 1/137. This action describes a
particle of massm = 4M moving as a function of the ‘pseudotime’s in an Aharonov–Bohm
field and a harmonic oscillator potential of frequency

ω2 = M2c4− E2

4M2c2
. (38)

In addition, there is an extra attractive potentialVextra = −4h̄2α2/2mu2 looking like
an inverted centrifugal barrier which is conveniently parametrized with the help of a
corresponding angular momentumlextra, whose square is negative:l2extra ≡ −4α2, writing
Vextra= h̄2l2extra/2mu

2. Such an extra potential can easily be incorporated into the amplitude
of the pure Coulomb system by a technique developed in the treatment of the radial part of
the harmonic oscillator path integral†, yielding a radial amplitude for the azimuthal quantum
numberk:

G(ub, ua; S)k = m

h̄

ω
√
ubua

sinhωs
exp

[
− mω

2h̄
(u2
b + u2

a) cothωs

]
I√|k|2−4α2

(
m

h̄

ωubua

sinhωs

)
(39)

whereIν is the modified Bessel function. Also incorporating the effect of the Aharonov–
Bohm potential yields

G(ub, ua; S)k+2µ0 =
m

h̄

ω
√
ubua

sinhωs

× exp

[
− mω

2h̄
(u2
b + u2

a) cothωs

]
I√|k+2µ0|2−4α2

(
m

h̄

ωubua

sinhωs

)
. (40)

These radial amplitudes can now be combined with angular wavefunctions to find the full
amplitude of equation (36).

† See sections 8.6 and 16.6 in [2]; and [12].
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Inserting the result into the integral representation of equation (23) for the resolvent,
we use polar coordinates inx-space withθ = 2ϕ, r = u2, and obtain the expression

G(xb,xa;E) =
∞∑

k=−∞
G(rb, ra;E)k 1

2π
eik(θb−θa) (41)

where

G(rb, ra;E)k = ih̄

2Mc

2M

h̄

∫ ∞
0

dS ee
2ES/h̄Mc2

× ω

sinhωs
exp

[
− mω

2h̄
(rb + ra) cothωs

]
I√

4|k+µ0|2−4α2

(
m

h̄

ω
√
rbra

sinhωs

)
. (42)

The integral can be calculated with the help of the formula∫ ∞
0

dy
e2νy

sinhy
exp

[
− t

2
(ζa + ζb) cothy

]
Iµ

(
t
√
ζbζa

sinhy

)
= 0((1+ µ)/2− ν)

t
√
ζbζa0(µ+ 1)

Wν,µ/2(tζb)Mν,µ/2(tζa) (43)

with the range of validity

ζb > ζa > 0 Re [(1+ µ)/2− ν] > 0

Re(t) > 0 |argt | < π

whereMµ,ν andWµ,ν are the Whittaker functions [15, p 1087]. In this way, we obtain the
final result for the radial amplitude valid forub > ua:

G(rb, ra;E)k = ih̄

2Mc

Mc√
M2c4− E2

×0(1/2+
√
|k + µ0|2− α2− Eα/√M2c4− E2)

√
rarb0(2

√
|k + µ0|2− α2+ 1)

×W
Eα/
√
M2c4−E2,

√
|k+µ0|2−α2

(
2

h̄c

√
M2c4− E2rb

)
×M

Eα/
√
M2c4−E2,

√
|k+µ0|2−α2

(
2

h̄c

√
M2c4− E2ra

)
. (44)

The energy spectra and wavefunctions can be extracted from the poles of equation (44).
For convenience, we define the following variables

κ = 1

h̄c

√
M2c4− E2

ν = αE√
M2c4− E2

k̃ =
√
|k + µ0|2− α2− 1/2. (45)

From the poles ofG(rb, ra;E)k, we find that the energy levels must satisfy the equality

−ν + k̃ + 1= −nr nr = 0, 1, 2, 3, . . . . (46)

Expanding this equation into a power ofα, we get

Enk = ±Mc2

{
1− 1

2

[
α

nr + |k + µ0| + 1/2

]2

− α4

[nr + |k + µ0| + 1/2]3

×
[

1

2|k + µ0| −
3

8[nr + |k + µ0| + 1/2]

]
+ · · ·

}
. (47)
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The relativistic energy spectra can also be obtained from the local approach using the time-
independent Klein–Gordon equation. In the non-relativistic limit, the spectra reduces to that
in [14, 15]. It is worth noting that if the flux is quantized, i.e. 4πg = 2πh̄c/e × integer,
then |k + µ0| is an integer and the spectrum is that of the relativistic hydrogen atom. In
this case, there is no Aharonov–Bohm effect.

The pole positions, which satisfyν = ñk ≡ n+ k̃−|k| (n = |k|+1, |k|+2, |k|+3, . . .),
correspond to the bound states of the two-dimensional relativistic ABC system. Near the
positive-energy poles, we use the behaviour forν ≈ ñk,

−i0(−ν + k̃ + 1)
M

h̄κ
≈ (−)nr
ñ2
knr !

1

ãH

(
E

Mc2

)2 ih̄2Mc2

E2− E2
nk

(48)

with ãH ≡ aHMc2/E being the modified energy-dependent Bohr radius andnr = n−|k|−1
the radial quantum number, to extract the amplitude of the two-dimensional ABC system

G(rb, ra;E)k =
(

h̄

2Mc

)
1√
rarb

∞∑
n=|k|+1

(
E

Mc2

)2 ih̄2Mc2

E2− E2
nk

× 1

[(2k̃ + 1)!] 2

1

ñ2
kãH

(ñk + k̃)!
(n− |k| − 1)!

e−(rb+ra)/ãH ñk
(

2rb
ãH ñk

2ra
ãH ñk

)k̃+1

×M
(
−n+ |k| + 1, 2k̃ + 2; 2rb

ãH ñk

)
M

(
−n+ |k| + 1, 2k̃ + 2; 2ra

ãH ñk

)
=
(

h̄

2Mc

)
1√
rarb

∞∑
n=|k|+1

(
E

Mc2

)2 ih̄2Mc2

E2− E2
nk

Rnk(rb)R
∗
nk(ra)+ · · · (49)

where we have expressed the Whittaker functionMλ,µ(z) in terms of the Kummer functions
M(a, b; z) [13, p 1087]

Mλ,µ(z) = zµ+1/2 e−z/2M(µ− λ+ 1/2, 2µ+ 1; z). (50)

From equation (49), we obtain the radial wavefunctions

Rnk(r) = 1

(2k̃ + 1)!

√
(ñk + k̃)!

(n− |k| − 1)!

1

ñkã
1/2
H

×
(

2r

ãH ñk

)k̃+1

e−r/ãH ñkM
(
−n+ |k| + 1, 2k̃ + 2; 2r

ãH ñk

)
. (51)

It could easily found that, when the vector potential vanishes, equation (51) is the same as
the two-dimensional relativistic Coulomb wavefunction.

Before extracting the continuous wavefunction we note that the parameterκ is real for
|E| < Mc2. For |E| > Mc2, the square root in equation (45) has two imaginary solutions

κ = ∓iς ς = 1

h̄c

√
E2−M2c4 (52)

corresponding to

ν = ±iν̃ ν̃ = Eα

h̄cς
. (53)

Therefore the amplitude has a right-handed cut forE > Mc2 and E < −Mc2. For
simplicity, we will only consider the positive energy cut.
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The continuous wavefunction is recovered from the discontinuity of the amplitudes
G(rb, ra;E)k across the cut in the complexE plane. Hence, we have

discG(rb, ra;E > Mc2) ≡ G(rb, ra;E + iη)k −G(rb, ra;E − iη)k

= h̄

2Mc
√
rarb

M

h̄ς

[
0(−iν̃ + k̃ + 1)

(2k̃ + 1)!
Wiν̃,k̃+1/2(−2iςrb)Miν̃,k̃+1/2(−2iςra)

+(ν̃ →−ν̃)
]

(54)

where the notationη is an infinitesimal parameter. Using the relations [16, p 299]

Mκ,µ(z) = e±iπ(2µ+1)/2M−κ,µ(−z) (55)

where the sign is positive or negative in terms of Imz > 0 or Imz < 0, and [13, p 1090]

Wλ,µ(z) = eiπλ e−iπ(µ+1/2) 0(µ+ λ+ 1/2)

0(2µ+ 1)

×
[
Mλ,µ(z)− 0(2µ+ 1)

0(µ− λ+ 1/2)
e−iπλW−λ,µ(e−iπz)

]
(56)

is valid only for arg(z) ∈ (−π/2, 3π/2) and 2µ 6= −1,−2,−3, . . . . The discontinuity of
the amplitude is found to be

discG(rb, ra;E > Mc2) = h̄

2Mc
√
rarb

M

h̄ς

|0(−iν̃ + k̃ + 1)|2
|0(2k̃ + 2)|2

×eπν̃M−iν̃,k̃+1/2(2iςrb)Miν̃,k̃+1/2(−2iςra). (57)

Thus we have∫ ∞
Mc2

dE

2πh̄
discG(rb, ra;E > Mc2)

= 1

2πh̄

∫ ∞
−∞

(h̄c)2ς dς√
M2c4+ (h̄cς)2

discG(rb, ra;E > Mc2)

= h̄

2Mc
√
rarb

∫ ∞
−∞

dς

(
E

Mc2

)
Rςk(rb)R

∗
ςk(ra). (58)

From equation (58), we obtain the continuous radial wavefunction of the two-dimensional
relativistic ABC system

Rςk(r) =
√

1

2π

1

[1+ (ch̄ς/Mc2)2]1/2

|0(−iν̃ + k̃ + 1)|
(2k̃ + 1)!

eπν̃/2Miν̃,k̃+1/2(−2iςr) (59)

=
√

1

2π

1

[1+ (ch̄ς/Mc2)2]1/2

|0(−iν̃ + k̃ + 1)|
(2k̃ + 1)!

×eπν̃/2 eiςr (−2iςr)k̃+1×M(−iν̃ + k̃ + 1, 2k̃ + 2;−2iςr). (60)

3. Conclusions

In this paper, Kleinert’s relativistic path integral with the magnetic interaction is studied. As
an application, we have calculated the path integral of the relativistic ABC system in two
dimensions. The ABC case serves as a prototype of path integral for arbitrary relativistic
potential systems.
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It is our hope that our studies would help to achieve the ultimate goal of obtaining a
comprehensive and complete path integral description of quantum mechanics and quantum
field theory, including quantum gravity and cosmology.
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