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Abstract. The path integral for the relativistic spinless Aharonov—Bohm—-Coulomb system is
performed. The energy spectra and wavefunctions are extracted from the resulting amplitude.

1. Introduction

With the help of Duru and Kleinert's path-dependent time transformation [1] the list of
solvable path integrals has been extended to essentially all potential problems which possess
a solvable Sclidinger equation [2, 3]. Only recently has the technique been extended to
relativistic potential problems [4], followed by two applications [6—9]. Here we would
like to add a further application by solving the path integral of a relativistic particle in
two dimensions in the presence of an infinitely thin Aharonov—Bohm magnetic field along
the z-axis [10] and a 1r-Coulomb potential (ABC system). This may be relevant for
understanding the behaviour of relativistic charged anyons which are restricted to a plane
but whose Coulomb field extends into three dimensions [2, 11].

This paper is organized as follow. In section 2, we calculate the path integral of the
relativistic ABC potential problem. The energy spectra and wavefunctions are extracted
from the resulting amplitude. Our conclusions are summarized in section 3.

2. Path integral for a relativistic Aharonov—Bohn—Coulomb system

Let us first consider a point particle of mad$é moving at a relativistic velocity in a

(D + D)-dimensional Minkowski space with a given electromagnetic field. By using
t = —it = —ix*/c, the path integral representation of the fixed-energy amplitude (Green
function) is conveniently formulated in @ + 1)-Euclidean spacetime with the Euclidean
metric,

(gu) =diag(, ..., 1,¢? (1)
and is given by [4, 5]

G(xp, xa; E) = i/ dL /Dpd>[p]/DDxe‘AE/E 2)
2MC 0

1 E-mail address: d793314@phys.nthu.edu.tw
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with the action
Tb M 12 .€ /
AE=/ dr () —i-A(x) - 2'(t) — p(1)
w  L20() c
whereL is defined by
L = / dr p(7) 4)

a

+p(7)

(E = V(x))? Mc?
2M 2 2 :| ®

in which p(t) is an arbitrary dimensionless fluctuating scale variable, @fd] is some
convenient gauge-fixing functional, such @§p] = §[p — 1], to fix the value ofp(r) to
unity [4, 6, 7]. h/Mc is the well known Compton wavelength of a particle of massA ()
is the vector potentialy (x) is the scalar potentialt is the system energy, and is the
spatial part of thep + 1) vectorx = (x, 7). This path integral forms the basis for studying
relativistic potential problems.
For the ABC system under consideration, the scalar potential is

V(r) = —e%/r ®)

and the vector potential reads
—X2€1 + X162
Ax) =2g———F— 6
(x) = 2¢ . (6)

wheree is the charge and,; , stand for the unit vector along the y axis, respectively.
For convenience, we introduce the azimuthal angle around the tube:

0(x) = arctanx,/x1). ©)
The components of the vector potential can be, therefore, expressed as

A; = 2g0;0. (8)
The associated magnetic field lines are confined to an infinitely thin tube alongatkis:

B3 = 2g€310;00 = 2g2m8P () (9)

wherex | is the transverse vectar; = (x1, x2).
To obtain a tractable path integral for the potentigl we have to regularize it via a
so-called f-transformation [2, 6], which exchanges the path parametey a new ones:

dr =ds Ji(xy) fr(@y-1) (10)

where f;(x) and f,(x) are invertible functions whose product is positive. The freedom
in choosing f; - amounts to an invariance under path-dependent reparametrizations of the
path parametet in the fixed-energy amplitude of equation (2). By this transformation,
the (D + 1)-dimensional relativistic fixed-energy amplitude for arbitrary time-independent
potential turns into the lattice form [2, 6]

e Nl fil@a) fr(xp)
ds do, ©(p, —
ZMC/O HU on Lo )}[2nhe,ipbﬁ(asb)fr<wa>/M]D/Z

G(ﬂ)/,, Ly, E) ~

n=1
dPx 1
i —=AY 11
% 1_[ |:/oo [Zﬂhenpnf(:c,,)/M]D/z] & p{ } an
with the s—sllced action
N+1 2
M(CB,, - ':anl) .€
AN = |: —i-A, - (x, —x,_
; Zé}gpnfl(mn)fr(xn—l) Cc ( l)

— 2 M 2
—€, pnfl(wn)fr(wn l)% + ezpnfl(xn)fr(wnl)Tc] (12)
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where the sigre in equation (11) becomes an equality fér— oco. A family of functions
which regulates the ABC system is

f@=f@*  fi@ = f@)’ (13)
whose product satisfieg;(x) f,(x) = f(x) = r. In two dimensions, we obtain the
amplitude

Iﬁ [ee) N+1
G(xp, x4 E) = 2Mc/ ds ]_[ [/dpncb(pn)}
0 n=1

(N I "
X_— - -— - =
2heypp/M 5 | ) - 2The) purn—1/M P h

with the action

N+1 2
M(x, —x,_1) e
AN = —_—— —-A, (x, — T, _
E |: - (Tp — xHp-1)

1-A a
s
n=1 Zenp”r” Tn1

—62,0"1”" (ra-1/1n) 2M 2 + 62)0,,1’,1 (rnfl/rn))LT . (15)

Since the path integral represents the general relativistic resolvent operator, all results must
be independent of the splitting parameteafter going to the continuum limit. Choosing
A = 1/2, we obtain the continuum limit

2 _ 2 2
AE[.’E,.’B/] Z/ds [M.x —|EA'$/_,07'(E V) +prMC } (16)

L(E—=V,)? Mc2i|

20r c 2Mc? 2

We now solve thes-sliced ABC system as in the case of the two-dimensional Coulomb
problem without the Aharonov-Bohm potential [2]. We introducing thevi-Civitd
transformation

(2)=( ) () an

and write this in a matrix form:

= A(u)u. (18)
For every slice, the coordinate transformation reads

T, = A(up)u, (19)
yielding

(rx!)? = 4 (pul)? (20)

whereu, = (u, + u,_1)/2. For the sliced AB potential, i.e.

o (XZ)nél - (xl)néZ

A, =-2 . (21)
r}’l
the Levi-Civita transformation yields
n(A n n(A n ZA 1 lA 2
A, - (@, — 2y1) = —2g (2 (AxVn = (XD (AX2)n _ —4gu” Uy = Uy Aty 22)

r2 u?
Thus we obtain for the path integral of equation (14) the Duru—Kleinert-transformed
expression:

ih © 1
Gy w1 E) = o / ds eSEfz/WCZZ[G(ub,ua; S) + G(—up, ug; S)] (23)
0
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whereG (uy, u,; S) is thes-sliced amplitude of a harmonic oscillator in an Aharonov—-Bohm
vector potential corresponding to twice the magnetic field of equation (&)space:

G( S) ]\lli[l /d CI)( ) 1 ﬁ /‘00 d2un ex 1AN
Uy, Ug; S) = S - _Z
b, Uq, 1l On On 27rh6f,,0b/M i —o0 27Th6;§pn/M p 7

with the action

N+1 2 2,,2 72,2
m(Au,) e . mo‘u h4o
AN = — —2i-(A, - Au, 5 on L op——=1. 24
;{ 26‘;“0,, C( u )+E,”O 2 € 2mu,2l} ( )
Here
M?c* — E?
— 2 _
and
2 00t — ulau?
A, - Au, = —2g 2t~ Hn Dy (26)

uj

The symmetrization inu;, in equation (23) is necessary since for each path fignto x;
there are two paths in the square root space, one #no u, and one fromu, to —u,.

As in the two-dimensional Coulomb problem, there aresslicing corrections [2].

Let us now analyse the effect of the magnetic interaction upon the Coulomb system,
defining the azimuthal angle(u) = arctaru?/u') = 6(x)/2 in the u-plane, so that
A, = 280,90, Bz = 2ge3;x0;0p. Note that the derivatives in front af(uw) commute
everywhere, except at the origin where Stokes’ theorem yields

/ d?u(910, — 9201)9 = f dy = 27. (27)
The magnetic flux through the tube is defined by the integral
o= / du Bs. (28)

A comparison with the equation far(u) shows that the coupling constaatis related to
the magnetic flux by

O
8=, (29)
When insertingd,, = 2gd,¢ into equation (24), the interaction takes the form
S
Amag = _Z}TMO/ ds (P/(S) (30)
0
whereg(s) = ¢(u(s)), and ug is the dimensionless number
2e
c

The minus sign is a matter of convention. Since the particle orbits are present at all times,
their worldlines in spacetime can be considered as being closed at infinity, and the integral

1 S
n= —/ ds ¢’ (32)
2 0

is the topological invariant with integer values of the winding numberThe magnetic
interaction is therefore purely topological, its value being

Amag= —hpodrn. (33)
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After adding this to the action of equation (24) in the radial decomposition of the relativistic
path integral [3,6,7], we rewrite the sum over the azimuthal quantum nunibera
Poisson’s summation formula

> s = [ du 3 s (34)
and obtain
o0 1 .
. _ . (—2p0) (Pp+2nT —@4)
c;(ub,ua,S)_/_wdu mG(uh,ua,snxn;wZéﬂ o)t 20m=0.). (35)

Since the winding numbet is often not easy to measure experimentally, let us extract
observable consequences which are independent ©he sum over alk forcesu to be
equal to 2.0 modulo an arbitrary integer number. The result is

o0

1
G(up, uy; S) =
’ k:X—:oo VALY

We now choose the gaugss) = 1 in equation (24). This leads to the Duru—Kleinert
transformed action

1 .
Gy a3 ez ghler=yo), (36)

2,,2

§ mu'? e mou?  Ahla?
AN — d —2i-(A-u - — 37
/(; S[ 2 Ic( w)+ 2 21nu2] 37)

wherea denotes the fine-structure constant= ¢?/hc ~ 1/137. This action describes a
particle of mass: = 4M moving as a function of the ‘pseudotimein an Aharonov—Bohm
field and a harmonic oscillator potential of frequency

MZ 4 E2
2
_ 38
@ AM2c2 (38)
In addition, there is an extra attractive potentidlga = —4h%«?/2mu? looking like

an inverted centrifugal barrier which is conveniently parametrized with the help of a
corresponding angular momentugyy, Whose square is negativé? ., = —4a?, writing
Vextra= Ezléxtra/Zmuz. Such an extra potential can easily be incorporated into the amplitude
of the pure Coulomb system by a technique developed in the treatment of the radial part of
the harmonic oscillator path integtalielding a radial amplitude for the azimuthal quantum
numberk:

m w./uplg mw
G(up, ug; Sk = — — i

h sinhws
where I, is the modified Bessel function. Also incorporating the effect of the Aharonov—
Bohm potential yields

. , m wupli,
(uj, + uy) COthws:|Ix/lk24°‘2 (f sinhws> 49

m w./Uplg
Gup, ug; S)k+2uo = ﬁm
mw 2 2 m wuplg
X exp[ - E(ub +uy) Cothws} IJ|k+2uo\2—4a2 (f Sinha)s>' (40)

These radial amplitudes can now be combined with angular wavefunctions to find the full
amplitude of equation (36).

1 See sections 8.6 and 16.6 in [2]; and [12].
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Inserting the result into the integral representation of equation (23) for the resolvent,
we use polar coordinates in-space withd = 2¢, r = u?, and obtain the expression

oo
1 .
@y, w43 E) = ) Gy, 103 E)iy— €7 (41)
k=—o00
where
ih 2M [ 2 2
G(rp ra: E)p = | dseES/iMe
(rps ras Ei e T /o
mw m w.\/rprqy
X Sinhaws eXp[ o ("o 7 ra) €Ot ")S] «/4|’<+M0I2—4az<h sinha)s> (42)

The integral can be calculated with the help of the formula
© e t 1/
—= hy |1
fo dy sinhy exp[ 5(a + &) cot y} 1 ( S nhy)
_ DA+ w/2-v)

VBT + D)
with the range of validity

& >8>0 Re[1+ u)/2—v] >0
Re(t) > 0 largt| < 7

whereM,, , andW, , are the Whittaker functions [15, p 1087]. In this way, we obtain the
final result for the radial amplitude valid fos, > u,:

ih Mc
2Mc JM24 — E2

T'(1/2+ 1k + pol? — a2 — Ea//M2%c* — E?)
: ST @+ ol — a2 + 1)

2
2,4 _ 2
><VVEoz/ M2c4—E?, \/ |k+po|>—a? (Ecmrh>
2
— 20,4 _ 2
XME(X/ MZCA_EZ,\/U(-HLQ\Z—(XZ (EC \/mra> . (44)

The energy spectra and wavefunctions can be extracted from the poles of equation (44).
For convenience, we define the following variables

K = _i\/ M?2c* — E2

Wv,u/Z(té‘b)Mv.pL/Z(té‘a) (43)

G(rp,ry; E) =

hc
_ aFE
- JMZA—E?

k= |k + pol2 — a? —1/2. (45)

From the poles oG (rp, r,; E)i, we find that the energy levels must satisfy the equality

—v4+k+1=-n, n,=0123.... (46)
Expanding this equation into a power @f we get
2 1 o 2 ot
Ey=+Mc*{1—- - -
2 n, + Ik + pol +1/2 [nr + [k + pol + 1/2J°

x|: = — 3 ] _|_} (47)
2lk 4+ pol  8[n, + |k + 1ol +1/2] '
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The relativistic energy spectra can also be obtained from the local approach using the time-
independent Klein—Gordon equation. In the non-relativistic limit, the spectra reduces to that
in [14,15]. It is worth noting that if the flux is quantized, i.erd = 2whc/e x integer,
then |k + uol is an integer and the spectrum is that of the relativistic hydrogen atom. In
this case, there is no Aharonov—Bohm effect.

The pole positions, which satisty= n; = n+k—|k| (n = lk|+1, k| +2, |k|+3,...),
correspond to the bound states of the two-dimensional relativistic ABC system. Near the
positive-energy poles, we use the behaviounfee 7,

—iT(—v+k+1)

_\ny 2 2
M () 1<E> in2Me )

hic ﬁ,fn,!z Mc? EZ—Efk
with @y = ay Mc?/E being the modified energy-dependent Bohr radiusang n— k| —1
the radial quantum number, to extract the amplitude of the two-dimensional ABC system

00 2 . 2
G<rh»ra;E>k=< ! ) Ly <E>M

2Mc ) Jrarp ) Mc?) E2— E?
~ ~ k+1
o 1 1 (g + k)! (b s <~2rf ~Zrf )
[(2k + VN2 azay (n — k| — 1)! apfiy agiy
3 2 N 2,
xMCm+w+L%+z~7>M<m+w+L%+z~i>
agng agng
13 1 & ( E )2 ih2M 2
= — ) S R ) R (r) + -+ (49)
(ZMC) N n:|2k:|+1 Mc2) Ez— g2, Tk

where we have expressed the Whittaker funciign, (z) in terms of the Kummer functions
M (a, b; z) [13, p 1087]

My u(2) = 2"M2ePM(u — A+ 1/2, 2 + 1; 2). (50)

From equation (49), we obtain the radial wavefunctions

Rar) 1 (g + k) 1
wk(r) = —=
‘ @k + D!\ (o — 1kl = D! a2

or \FL 3 2
x < i ) e //anik pp (—n+ k| + 1, 2k + 2; = i ) (51)
apgng apgng

It could easily found that, when the vector potential vanishes, equation (51) is the same as
the two-dimensional relativistic Coulomb wavefunction.

Before extracting the continuous wavefunction we note that the paramétareal for
|E| < Mc?. For |E| > Mc?, the square root in equation (45) has two imaginary solutions

. 1
K = Fi¢ ¢c=—vVE2— M3* (52)

"~ he
corresponding to
E
v=4ib b= e (53)
hce

Therefore the amplitude has a right-handed cut for> Mc? and E < —Mc?. For
simplicity, we will only consider the positive energy cut.
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The continuous wavefunction is recovered from the discontinuity of the amplitudes
G (rp, rq; E), across the cut in the complex plane. Hence, we have
discG(ry, rg: E > Mc®) = G(rp, ra; E + i — G(rp, ra; E — i)y
B 13 M[T(—=ib+k+1)
= 2Mcm77g[ (2F + 1!

+@ — —f))i| (54)

iﬁ,12+1/2(_2iS"’b)Mig’,;H/z(—Zigra)

where the notatiom is an infinitesimal parameter. Using the relations [16, p 299]
Myu(2) = €AY (=2) (55)
where the sign is positive or negative in terms ofzZm 0 or Imz < 0, and [13, p 1090]
_ dmiginurtp L+ A +1/2)
reu+1
ru+1)
F(w—xr+1/2)

is valid only for arg(z) € (—x/2,3r7/2) and & # —1, -2, —3,.... The discontinuity of
the amplitude is found to be

Wk,u(z)

X [Mm(z) — e W_x,ﬂ(ei”z)} (56)

I M T (—iD +k + 1)|2

2Mc Jrars ks T2k + 2)2
xe”‘BMfiﬁ‘,;Hﬂ(Zigrb)Miw;H/z(—Zigra). (57)

Thus we have

discG (rp, ra: E > Mc?) =

/OO dE discG( E > Mc?)
g as >
vez 21h o T ¢

1 [ (he)®sdg
21th J_o0 /M2c* + (hicc)?

h o0 E
= 2Mcm/ dg (W) ng(”b)Rzk("a)- (58)

From equation (58), we obtain the continuous radial wavefunction of the two-dimensional
relativistic ABC system

/1 1 DD+ k+D] o0, o
Rt =\ o W (che /MDA 2 1)1 & My a2 (= 2ier) (59)

_ [T 1 T (=D +k+ 1)
“V2r [14 (chg/Mc»AY2 (2% + 1)

x @2 dST(—2icry L 5 M(=iD +k + 1, 2% + 2, —2icr). (60)

discG(rp, ra; E > Mc?)

3. Conclusions

In this paper, Kleinert’s relativistic path integral with the magnetic interaction is studied. As
an application, we have calculated the path integral of the relativistic ABC system in two
dimensions. The ABC case serves as a prototype of path integral for arbitrary relativistic
potential systems.
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It is our hope that our studies would help to achieve the ultimate goal of obtaining a
comprehensive and complete path integral description of quantum mechanics and quantum
field theory, including quantum gravity and cosmology.
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